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Abstract
Mapping hydrothermal alteration minerals and structural lineaments using Landsat 8 multispectral imagery provides valuable
information for mineral exploration. In northern Portugal, there are several known gold occurrences, but there is the potential to
identify new anomalous areas. Gold mineralization occurs in the form of quartz veins and veinlets associated with hydrothermal
alteration halos. Fractures are interpreted as conduits for mineralizing fluids, where the interaction between the wall rock and
hydrothermal fluids induces compositional variations. Identifying these features is one of the key indicators for targeting new
prospective zones of orogenic gold mineralization in the Boticas–Chaves region. Remote sensing image processing methods
such as band combinations, band ratios, and principal component analysis (PCA) were implemented to the visible, near-infrared,
and shortwave infrared bands of Landsat 8. The results of this investigation demonstrate the capability of the applied imagery
enhancement methods in distinguishing different features and identifying hydrothermally altered rocks. Selective PCA proved to
be the most effective and reliable method to identify iron oxides and hydroxyl-bearing minerals, compared to other methods,
where a simple imagery analysis has a strong influence of noise and is more challenging to interpret. Enhanced imagery allowed
the identification of physiographic characteristics and extracted structural features. The combination of mapped hydrothermal
alteration minerals and extracted structural features allowed us to predict potential areas for the mineralization occurrence. This
investigation proves that remote sensing can be a cost-efficient and time-saving technique for mineral exploration, and its
application in new areas can accurately map hydrothermal alteration and outline potential new exploration targets.
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Introduction

Geological remote sensing has proven to be an effective and
important tool for locating mineral deposits and identifying
mineral associations through spectral anomalies (Sabins 1999;
Rajesh 2004; Robert et al. 2007; van der Meer et al. 2012;
Cardoso-Fernandes et al. 2019). Remote sensing is a powerful
technique for recognizing hydrothermally altered rocks, struc-
tures, lineaments, lithological units, vegetation, and other valu-
able information for geologists (Goetz et al. 1982; Sabins 1999;
Drury 2001; Nikolakopoulos et al. 2008; Goetz 2009; Mielke
et al. 2014; Cudahy 2016; Pour et al. 2018a, Pour et al. 2018b;
Bolouki et al. 2020; Mahboob et al. 2019; Pour et al. 2019;
Beygi et al. 2020; Cardoso-Fernandes et al. 2020a; Cardoso-
Fernandes et al. 2020b; Traore et al. 2020; Takodjou Wambo
et al. 2020). Regional mapping of exposed altered rocks with
remote sensing supports exploration teams, helping to identify
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target exploration areas (Sabins 1999; Robert et al. 2007;
Cudahy 2016; Pour et al. 2018b; Bolouki et al. 2020;
Booysen et al. 2019; Eldosouky et al. 2020; Pour et al. 2019;
Beygi et al. 2020; Sekandari et al. 2020; Traore et al. 2020;
Takodjou Wambo et al. 2020). Since the 1970s, multispectral
remote sensing imagery has been used for regional mineral
exploration, such as images from NASA’s Landsat. The spec-
tral signatures of minerals and mineral assemblages formed by
hydrothermal alteration are used to identify outflows of hydro-
thermal systems, which can support the recognition of miner-
alized zones (Sabins 1999; Rajesh 2004; Moradi et al. 2014).
The spectral signatures of minerals and rocks are based on
work by Hunt (1977) and Salisbury et al. (1989), who mea-
sured in the laboratory the spectra of several different minerals
and rocks. Afterwards, a number of techniques and analysis
methods were developed to process satellite imagery and rec-
ognize hydrothermal alteration areas.

Since then, several published studies proved the potential
for remote sensing in mapping hydrothermally altered rocks.
Rowan et al. (1977) identified hydrothermally altered rocks
using Landsat Multispectral Scanner (MSS) bands in south-
central Nevada. Moulton and Ridd (1990) used Landsat
Thematic Mapper imagery integrated with geophysical data
to identify hydrothermal alterations in the east Tintic mining
district of Utah. Crósta et al. (2003) mapped key alteration
zones related to epithermal gold deposits in Patagonia, using
Advanced Spaceborne Thermal Emission and Reflection
(ASTER) imagery. Nikolakopoulos et al. (2008) performed
a comparison of hyperspectral data from EO-1 Hyperion with
multispectral data from the EO-1 Advanced Land Imager and
Landsat 7 ETM+ for mineral mapping in Milos Isand, Greece.
Zoheir and Emam (2012) mapped gold exploration targets in
the Eastern Desert, Egypt, using ASTER and Landsat
Enhanced Thematic Mapper Plus (ETM+) imagery. Pour
and Hashim (2015) mapped hydrothermal alteration areas
and lithological units in the Sar Chseshmeh copper mining
district of southeast Iran using Landsat 8 imagery. Safari
et al. (2017) used Landsat 8 data to map hydrothermal alter-
ation zones associated with porphyry copper and epithermal
gold mineralization in the Shahr-r-Babak region of Iran. Pour
et al. (2018b) used Landsat 8, ASTER, and WorldView-3
multispectral data to map hydrothermally altered areas asso-
ciated with copper-gold mineralization in Inglefield Land,
Northwest Greenland. Zoheir et al. (2019) explained regional
structural control of orogenic gold mineralization in the
Barramiya-Mueilha sector of Egypt using Sentinel-1 and
Sentinel-2, Phased Array type L-band Synthetic Aperture
Radar (PALSAR), and ASTER imagery to extract structural
features and highlight hydrothermally altered zones. Takodjou
Wambo et al. (2020) generate mineral prospectivity maps for
gold mineralization in a sub-tropical region, eastern
Cameroon, using Landsat 8 and ASTER imagery analysis to
identify hydrothermal alteration zones. Sekandari et al. (2020)

analyzed Landsat 8, Sentinel-2, ASTER, and WorldView-3
spectral data for detailed mapping of alteration zones, litho-
logical units, and structural features associated with
carbonate-hosted Pb-Zn mineralization in the Central Iranian
Terrane. Most of these geologically remote sensing studies for
mineral exploration were done in arid and semi-arid regions,
where the acquisition of spectral reflectance data from rocks
and soils is not so exposed to spectral noise from urbanized
areas and agricultural lands or covered by vegetation. These
remote sensing methodologies have not been broadly used in
Portugal, where only a few investigations have been produced
in recent years. Pereira et al. (2012) and Cardoso-Fernandes
et al. (2018, 2019, 2020a, b) applied different multi sensor
data to detect lithium-bearing pegmatites, and Lima et al.
(2014b) and Manuel et al. (2017) used remote sensing
methods in order to map structural features and alteration
minerals associated with gold mineralization, in Mirandela
and Góis region, respectively. The present investigation se-
lected an area in Boticas-Chaves region, northern Portugal
with a long history of gold exploration and several known
occurrences, characterized by anorogenic gold system gener-
ally associated with hydrothermally altered areas. Gold min-
eralization is hosted in quartz veins within granites and is
believed that it is controlled by a large-scale regional fault,
the Régua-Verín Fault, a structural feature associated with
many large-scale orogenic gold deposits located in the district
(Fuertes-Fuente et al. 2016). Well-established remote sensing
methods, such as band combinations, band ratios, and princi-
pal component analysis (PCA) applied to multispectral visible
and near-infrared (VNIR) and shortwave infrared (SWIR)
spectral bands, allow mapping iron oxides and hydroxyl-
bearing minerals. In this study, Landsat 8 data were used to
detailedly map the different hydrothermal alteration minerals
and extract structural features. This information allowed to
identify highly potential areas of gold occurrence, defining
exploration targets, bypassing time-consuming field recon-
naissance, and avoiding geochemical and geophysical studies
in uninteresting areas for mineral occurrence.

Study area

The study area is located within the Trás-os-Montes region,
northern Portugal. This area covers approximately 690 km2 of
Boticas and Chaves counties, and is bounded on the north by
the border with Galicia, Spain, and on the east by a NNE-SW
striking valley known as the Régua-Verín Fault. The latter
extends 200 km from Penacova to Verín and represents a
dextral active fault system associated with several thermal
events along its strike (Cabral 1995; Lourenço et al. 2002;
Fuertes-Fuente et al. 2016). Toward the west, it is bordered
by the Rabagão reservoir and Barroso Mountain.
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Several archeological occurrences from the pre-Roman era
have been found in this area (Martins 2005; Lima et al.
2014a). Mining activity was ongoing during the Roman pres-
ence in this region (Martins 2005; Lima et al. 2011; Lima et al.
2014a). These ancient mines comprise open pits and rare un-
derground works (Matias 2004; Martins 2005; Lima et al.
2014a).

Geological setting

The study area is located in the Iberian Massif, the occi-
dental portion of the European Variscan belt. The Iberian
Massif consists of four tectonic zones with contrasting
characteristics regarding their structure, stratigraphy,
metamorphism, and magmatism (Lotze 1945; Julivert
et al. 1974; Farias et al. 1987). The Boticas–Chaves re-
gion is located within the parautochthonous Galicia Trás-
os-Montes Zone (GTMZ), which consists of a west-
northwest trending fold–thrust belt overprinting the
Central Iberian Zone (Fig. 1). The GTMZ is characterized
by a metasedimentary sequence composed of phyllites,
micaschists, and quartz greywackes with rare calcsilicate
rocks (Farias et al. 1987; Ribeiro et al. 2000; Ribeiro et al.
2003; Ribeiro et al. 2007; Catalán et al. 2007; Noronha
et al. 2013). This metasedimentary sequence was intruded
by two main Variscan granitoid groups: (i) syn-kinematic
two-mica granite (315–310 Ma), which varies from
medium-grained to coarse-grained and from equigranular
to porphyritic, being fractured and hydrothermally altered
(Noronha et al. 2000); and (ii) two-mica to biotite late-
kinematic to post-kinematic granite (310–280 Ma), which
is controlled by the NNW-SSE trending Régua-Verín re-
gional fault, a major shear structure, mostly accommodat-
ing late deformation and bearing evidence of polyphase
reactivation (Ferreira et al. 1987; Dias et al. 1998;
Noronha et al. 2000).

Gold mineralization

Gold occurrences in northern Portugal show distribution par-
allel to the Variscan structures, granitic massifs, and late-
Variscan fractures, where veins were affected by different
phases of deformation that varied from ductile-brittle to brittle
(Ferreira et al. 1987; Noronha and Ramos 1993; Dias et al.
1998; Noronha et al. 2000; Noronha et al. 2013). During the
Variscan cycle, significant fluid production and circulation
were responsible for the ore concentration. These mineralizing
fluids have metamorphic and/or magmatic origin, being pro-
duced by rock dehydration and mixed with oxidizing meteoric
fluids (Noronha et al. 2000). The main channels responsible
for fluid circulation consist in large discontinuities that devel-
oped during ductile-brittle to brittle phases of deformation
with NNW-SSE and NNE-SSW fractures playing an

important role (Noronha et al. 2000). This fracture system
controlled intrusion of post-tectonic granites (280–270 Ma)
that activated convective circulation of hydrothermal and me-
teoric fluids. Fluid circulation remobilized pre-existing gold in
the Paleozoic metasediments and enhanced its concentration
in favorable zones (Noronha et al. 2000). Gold mineralization
is related to progressive dilution and cooling of crustal fluids
by mixing with meteoric fluids. Gold was deposited in struc-
tural and geochemical “traps” as microfractures of sulfides,
where it precipitates by electrochemical processes (Noronha
et al. 2000).

Noronha and Ramos (1993) proposed four stages of ore
formation based on different mineral associations in gold de-
posits of northern Portugal. The early stage is characterized by
the association between oxides and silicates such as rutile, feld-
spars, cassiterite, and wolframite. A later ferric-arsenic stage is
characterized by the association of arsenopyrite, pyrite, pyrrho-
tite, and bismuthinite. An intermediate stage of cupriferous zinc
is characterized by the association of chalcopyrite and sphaler-
ite. Two late stages were (i) lead-antimoniferous with galena
and sulphosalts and (ii) antimoniferous with antimony and
berthierite. Based on these mineralogical associations,
Noronha and Ramos (1993) defined three types of occurrences:
(i) As-Fe-Bi-Au-Ag-(W-Mo-Sn-Cu-Pb-Zn), corresponding to
a mineralogical association of arsenopyrite-pyrite-bismuth-
gold-electrum-(tungstate-cassiterite-stannite-molybdenite-
chalcopyrite-sphalerite-galena-sulphosalts); (ii) As-Fe-Pb-Zn-
Cu-Au-Ag-(Sb-Cd), corresponding to a mineralogical associa-
tion of arsenopyrite-pyrite-galena-chalcopyrite-sphalerite-
gold-electrum-(sulphosalts); and (iii) a combination of the two.

Fuertes-Fuente et al. (2016) provided a detailed description
of mineralization in the Limarinho deposit (Fig. 1), where two
gold parageneses were defined. In the first, Bi-Te-(±S), gold
occurs as native, along with native-Bi, hedleyite, and joséite-
B, in inclusions in sulfides. In the second, (±Cu)Ag-Pb-Bi-S
±Te, gold occurs as electrum in intergranular spaces or frac-
tures or in cavities of sulfides and quartz gangue and com-
prises (±Cu)Ag-Pb-Bi sulfosalts, Pb-Bi sulfotellurides, and
hessite. These authors also proposed two mechanisms for gold
mineralization: (i) bismuth melt scavenging gold from a gold-
unsaturated hydrothermal fluid (Au-Bi-Te±S paragenesis) and
(ii) gold remobilization together with new gold deposition due
to sulfur extraction from the hydrothermal fluid during the
stage of prevailing sulfide precipitation. These two events of
gold precipitation may have enhanced the gold grade in this
deposit.

The mineralized structures in the study area consist of
quartz veins or veinlets, sometimes in stockwork, striking
N20–40°, with a subvertical dip and thickness from 2 up to
20 cm (Cepedal et al. 2013; Fuertes-Fuente et al. 2016).
Fuertes-Fuente et al. (2016) described two main stages of
mineral deposition in quartz veins followed by successive
periods of vein reopening, crosscut by irregular veinlets (stage
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Fig. 1 Geological map of the study area showing mineral occurrences
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III). Stage I is characterized by milky quartz and arsenopyrite
veins, whereas stage II corresponds to the formation of clear
quartz, k-feldspar, chlorite, rutile, arsenopyrite, and pyrite,
with galena, chalcopyrite, and sphalerite in minor amounts.
Stage III veinlets and cavity fillings comprise vermicular chlo-
rite, sometimes clear euhedrical quartz crystals, galena, and
pyrite.

Intense vein density zones are accompanied by strong al-
teration of the wall rocks. This process of hydrothermal alter-
ation is related to the interaction between wall rocks and hy-
drothermal fluids, including heat and chemical compounds
inducing wall rock compositional changes.

Materials and methods

Landsat-8 remote sensing data

In this investigation, Landsat 8 OLI multispectral imagery
level 1T (path 204; row 31), acquired on 9 May 2015 under
excellent weather conditions (1.24% cloud cover) and im-
age quality, were used to extract mineralogical and struc-
tural information in Boticas-Chaves region, Portugal.
Landsat 8 is an American satellite launched in 2013 by a
collaboration between NASA and the United States
Geological Survey (USGS). The eighth satellite of the
Landsat program carries 2 instruments onboard: the
Operational Land Imager (OLI), which consists of 9 bands
with a spectral resolution of 30 m (bands 1–7 and 9) and 15
m for a panchromatic band (band 8), and the Thermal
Infrared Sensor (TIRS), which includes 2 thermal bands
(bands 10 and 11) collected with 100 m spatial resolution
but resampled to 30 m (USGS 2020a).

Data gathered in visible and SWIR regions have particular
features for geological applications (Rajesh 2004; Mwaniki
et al. 2015; USGS 2020a, b):

& Band 4 (visible: 0.64–0.67 μm): appropriate for discrimi-
nating soil and vegetation and delineating soil cover.

& Band 6 (SWIR: 1.57–1.65 μm): for soil and rock discrim-
ination, sensitive to moisture variation in vegetation and
soils and to the presence of ferric iron or hematite-rich
rocks.

& Band 7 (SWIR: 2.11–2.29 μm): coincides with absorption
features caused by hydrous minerals (clay mica, some
oxides, and sulfates), making them appear darker, usually
used in lithological mapping.

For this study, band 1 (coastal aerosol), band 9 (cirrus), and
bands 10 and 11 (TIRS bands) were discarded from the anal-
ysis. Thermal bands were not used due to the lower spatial
resolution.

Imagery preprocessing

Preprocessing procedures are important to obtain spatially and
radiometrically corrected images. Landsat imagery is current-
ly corrected by the USGS EROS Center, with radiometric
correction and geometric correction available (USGS
2020a). The data were converted to top of atmosphere
(TOA) reflectance using radiometric coefficients (USGS
2020b), where digital numbers (DN) are converted to TOA
reflectance representing the ratio of radiation reflected off a
surface to the radiation striking it (USGS 2020a). In order to
convert TOA reflectance to surface reflectance, the dark ob-
ject subtraction 1 (DOS1) atmospheric correction was applied.
These steps were performed in the QGIS software using the
Semi-Automatic Classification Plugin (SCP) (Congedo
2016).

After this, the spatial resolution of images from Landsat 8
bands 2 to 7 was improved through the application of a pan-
sharpening algorithm (Brovery transform), in SCP (Congedo
2016). Panchromatic band 8 (15 m) was used in this
procedure.

Image processing methods

Image processing methods transform multispectral satellite
data into images that enhance geological features in contrast
to the background. In this study, enhancement techniques
such as band composite, band rationing, and principal com-
ponent analysis (PCA) were applied to extract spatial and
spectral information related to lithology, structure, and hydro-
thermally altered zones. The overall workflow for the image
processing analysis is schematically represented in Fig. 2.

Fig. 2 Schematic diagram of overall workflow
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RGB combinations

Landsat imagery is composed of greyscale images that trans-
late spectral bands. A composite of three bands (red, green,
and blue) creates a multispectral color image. Different band
combinations, based on laboratory spectra of minerals, can be
used to enhance geological features (Pour and Hashim 2015).
Some well-known RGB combinations for Landsat 8 were
tested to identify (i) hydrothermal alteration: RGB 752 and
RGB 567 (Pour and Hashim 2015), and RGB 573 (Mia and
Fujimitsu 2012); (ii) iron oxides and clay minerals: RGB 257
and RGB 657 (Ali and Pour 2014); and (iii) lithological con-
trasts: RGB674 (Mwaniki et al. 2015).

Band ratio

Band rationing is a technique whereby one band is divided by
another in order to highlight features that cannot be seen in
raw bands (Nikolakopoulos et al. 2008; Ali and Pour 2014;
Pour and Hashim 2015). The ratios improve contrast and en-
hance compositional information while suppressing useless
information, such as shadowing and topographic surface
shadows (Nikolakopoulos et al. 2008; van der Meer et al.
2012; Ali and Pour 2014; Jain et al. 2018; Bolouki et al.
2020; Cardoso-Fernandes et al. 2019; Sekandari et al. 2020).

Considering Landsat 8, minerals such as alunite and clay
minerals such as illite, kaolinite, and montmorillonite have
distinctive absorption (low reflectance) features at SWIR 2
(2110–2290 nm) and low absorption at SWIR 1 (1570–1650
nm) bands (Sabins 1999), whereas iron oxides and sulfate
minerals commonly have strong reflectance near red (640–
670 nm) and low reflectance in the blue band (450–510 nm)
(Sabins 1999; van der Meer et al. 2012; Ali and Pour 2014;
Pour and Hashim 2015). Based on the spectral reflectance and
position of the absorption, some authors have proposed band
ratios for geological use in order to highlight minerals associ-
ated with hydrothermally altered rocks features (Table 1).

An RGB image composed of band ratios will discriminate
altered from unaltered ground and highlight areas where con-
centrations of theseminerals occur (Rajesh 2004). Sabins (1999)
proposed the RGB combination 4/2, 6/7, and 6/5 for lithological
mapping and recognition of hydrothermal alteration zones. Pour

and Hashim (2015) pointed out that RGB composite 4/2, 6/7,
and 5 is useful for the identification of lithology, altered rocks,
and vegetation.With the same purpose, theKaufmann ratio (7/5,
5/4, 6/7) was also applied in this work (Mia and Fujimitsu
2012).

Principal component analysis

Principal component analysis (PCA) is a technique used to
enhance and separate certain spectral signatures from the
background (Gabr et al. 2010; Moradi et al. 2014; Pour et al.
2018b; Bolouki et al. 2020; Sekandari et al. 2020; Takodjou
Wambo et al. 2020). PCA is a multivariate statistical tech-
nique that selects uncorrelated linear combinations (eigenvec-
tor loadings) of variables in such a way that each successively
extracted linear combination or principal component (PC) has
lower variance (Singh and Harrison 1985; Mia and Fujimitsu
2012). The number of output PCs is the same as the number of
input spectral bands. Thus, PCA consists of a linear transfor-
mation applied to highly correlated multidimensional data like
multispectral imagery, which has a similar visual appearance
for different bands, causing data redundancy (high correlation
of spectral bands) (Loughlin 1991).

PC analysis can be used in a standard or selective method
(Loughlin 1991). For standard analysis, all available spectral
bands are used in the input for the PC calculation; in selective
analysis, PCA is applied to selected input bands. For enhance-
ment of hydrothermal alteration zones, only the bands with
spectral characteristics for iron and hydroxyl-bearing minerals
are used (Crósta and Moore 1989; Loughlin 1991; Crósta and
Rabelo 1993). An examination of PCA eigenvector loadings
can decide which PC image contains more information related
to the theoretical spectral signatures of altered minerals (Singh
and Harrison 1985; Loughlin 1991).

Results

RGB combinations

Single band combination RGB images were produced to high-
light features not distinguished in visible spectral images. A true

Table 1 Tested band ratios for
Landsat 8 imagery Band

ratio
Feature References

4/2 Iron oxides Sabins (1999), Ali and Pour (2014), Sekandari et al. (2020)

6/7 Alunite and clay
minerals

Sabins (1999), Ali and Pour (2014), Pour and Hashim (2015)

6/5 Ferrous minerals Nikolakopoulos et al. (2008), Mia and Fujimitsu (2012), Ali and Pour
(2014)
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color image was produced with Landsat 8 visible surface reflec-
tance bands 4, 3, and 2 (red, green, and blue, respectively). This
band combination reproduces a natural color image and allows
an exploratory analysis of the area, distinguishing rock exposure
areas, vegetated areas, water bodies, and urbanized areas. False
color images were created using different band combinations.
Some of them highlight areas with vegetation or urban areas, like
the 543 and 764 combinations. RGB color combination images
allocated to near-infrared (band 5) and shortwave infrared (bands
6 and 7) aremore appropriate to identify geological and structural
features, and more specifically hydrothermally altered rocks.
Band combinations 573 and 567 (Fig. 3) better distinguish dif-
ferent features on a regional scale, such as rock exposure, vege-
tated and urbanized areas, and structural lineaments. In the 573
combination (Fig. 3a), vegetation is shown in red and dark red,
urban areas and ploughed fields in light blue and light green, and
rock outcrops in green, with alterations in shades of green to light
blue. Ploughed fields are shown in the same light blue as some
rock outcrops, probably due to soil remobilization exposing clay
and iron oxide minerals. In this combination, burned areas are
shown as an intense green.

In the 567 combination (Fig. 3b), the vegetation is shown in
orange and dark red (different colors correspond to different veg-
etation types), urban areas and ploughed fields are light blue to
blue, and water bodies are black. The rock exposure has a subtle
variation between light blue and greenish-blue but lithological

differences are not clear. Alterationminerals, such as clayminerals
and iron oxides, are shown in light blue. Bands 6 and 7 (SWIR
bands) are useful for soil and rock detection, but different types
and densities of vegetation also become clear with these bands.
This explains the intense blue areas, corresponding to burned
areas.

Band ratio

The band ratio method was also applied to create combination
RBG images enhancing hydrothermally altered rocks. The ratio
of band 4/band 2 was applied to highlight areas with abundant
iron oxide-bearing minerals as brighter pixels (Fig. 4a). The
ratio of band 6/band 5 discriminates ferrous minerals in a bright
tone. The ratio of band 6/band 7 distinguishes altered rocks
containing clays and alunite at bright pixels (Fig. 4b).

Based on the literature, RGB composite images containing
band ratios were produced. An image using Sabin’s ratio (4/2,
6/7, 6/5) was computed for lithological mapping and identifi-
cation of hydrothermal alteration zones (Fig. 5a). The ratio 4/2
was used for mapping iron oxides, which are depicted in pink
and orange. The ratio 6/7 was used to map clay mineral areas,
which are represented in green, but it is also sensitive to mois-
ture variation in vegetation and soils, highlighting vegetation
too. The ratio 6/5 shows high reflectance indicative of the
presence of ferrous minerals (purple).

Fig. 3 False color composites enhancing the different spectral signatures
in the study area. a RGB 573—vegetation is shown in shades of red,
urban areas and ploughed fields in light blue to light green, and rock
outcrops in shades of green to light blue. The intense light blue color
observed in rock outcrops is interpreted as alteration, highlighted with

white dash line. b RGB 567—the vegetation appears in shades of orange
and dark red, urban areas and ploughed fields in light blue to blue, and
rock exposure in shades of greenish-blue to light blue color. The light
blue color in rock exposure can be attributed to the alteration minerals
within these lithological units (highlighted in white dash lines)
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Another composite band ratio tested was the Kaufmann
ratio (7/5, 5/4, 6/7) (Fig. 5b). In this composite image, iron
oxides are purple to pink; ferrous minerals, rock exposure, and
urban structures are in red; and vegetation is shown in light
blue to blue.

Principal component analysis

PCAwas carried out using SCP (Congedo 2016) on Landsat 8
imagery with no atmospheric or radiometric correction, as it is
not required. The eigenvector matrix used to calculate PCA

Fig. 4 Highlighted altered minerals through band rationing. a 4/2 ratio image mapping iron oxides in bright pixels. b 6/7 ratio image mapping hydroxyl-
bearing minerals in bright pixels

Fig. 5 RGB composite images using band ratios to discriminate hydrothermally altered areas. a Sabin’s ratio (RGB 4/2, 6/7, 6/5). b Kaufmann ratio
(RGB 7/5, 5/4, 6/7)
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was analyzed to identify which PC more accurately highlights
hydrothermally altered zones. This technique was applied in a
standard method, where all six bands were analyzed, and a
selective method, using sets of four selected bands, based on
the position of spectral signatures of alteration minerals.

Standard method

A standard PCA was applied using six Landsat 8 bands (2, 3,
4, 5, 6, and 7) outputting an eigenvector matrix, listed in
Table 2. The result allowed us to identify the PC that had more
useful spectral information than that from Landsat 8 bands, in
contrast to the original bands.

Table 2 lists image statistics, eigenvalues, and eigenvector
loadings for PC analysis using the six bands. Each PC con-
tains six eigenvector loadings corresponding to linear combi-
nations of weighted input band images. The first principal
component (PC1), indicated by the accounted variance, con-
tains 94.5% of the total data variance. This PC is responsible
for the overall scene brightness or albedo. Based on the mag-
nitude analysis and signs of eigenvector loadings (positive or
negative), the PC containing hydrothermal alteration minerals
and vegetation spectral properties was identified. PC2 con-
tains 3.9% of the data variance and the eigenvector loadings
are dominated by vegetation due the high loading in band 5
(mapped in dark pixels because of the negative sign),
representing the difference between visible and NIR bands.
The eigenvector loadings for PC3, with 1.4% of variance,
represent the contrast of SWIR bands between visible and
NIR bands. The remaining three PCs contain information
highlighting hydrothermal alteration related to the spectral
response to iron oxides (absorption in band 2 and higher re-
flectance in band 4) and hydroxyl-bearing minerals (absorp-
tion in band 7 and higher reflectance in band 6). To highlight
iron oxide-rich areas, PCs with moderate to large eigenvector
loadings for bands 2 and 4, with opposite signs, are selected.
Iron oxide minerals are mapped in PC4 as bright pixels (band

2 is negative and band 4 is positive) and in PC5 as dark pixels
(band 2 is positive and band 4 is negative). Hydroxyl-bearing
minerals are highlighted as dark pixels in PC4 and PC5, be-
cause in both the contribution of band 6 is negative and that of
band 7 is positive. In PC6, hematite is mapped as dark pixels
because the contribution is negative from band 4 and positive
from band 3.

Based on the PCA outputs (Table 2), an RGB combination
was computed in order to identify hydrothermally altered
rocks, combining PC4, PC5, and PC6. For this image, PC5
was negated and stretched to highlight hydroxyl-bearing min-
erals and iron oxides in bright pixels. The same was done for
PC6.

The output image (Fig. 6) discriminates different features
better than the previously considered methods. Urban areas
are shown in pink, iron oxide-rich zones in yellow and pink,
clay-rich areas in light blue, and vegetation in brownish tones.
This RGB combination also shows good lithological contrast
at regional scale.

Selective PCA method

Following the Crósta technique proposed by Loughlin (1991),
selective PCA was performed to increase the highlight defini-
tion of a mineral class. The band subsets were selected based
on the position of spectral signatures of alteration minerals, as
hydroxyl-bearing minerals and iron oxides, in the VNIR and
SWIR bands.

To map hydroxyl-bearing minerals, a subset including
bands 2, 4, 5 and 6 were selected and analyzed (Table 3). A
similar interpretation to the standard PCA was made for the
eigenvalue loading matrix. PC1 corresponds to albedo with
94.8% of data variance; PC2 highlights dense vegetated areas
as bright pixels, with data variance of 3.6%; PC3 describes the
contrast between visible/NIR and SWIR bands, representing
1.5% of data variance; and PC4 highlights hydroxyl-bearing
minerals as dark pixels, with a data variance of 0.04%. The

Table 2 Eigenvector loadings
from PCA Landsat 8 bands 2–7 PC1 PC2 PC3 PC4 PC5 PC6

Band 2 −0.3354 0.4410 0.4777 −0.5367 0.1800 −0.3799
Band 3 −0.3224 0.3185 0.2795 0.0821 −0.1176 0.8342

Band 4 −0.3059 0.3495 0.0576 0.6690 −0.4202 −0.3960
Band 5 −0.6005 −0.7303 0.2953 0.1004 0.0781 −0.0511
Band 6 −0.4583 0.0110 −0.6390 −0.4307 −0.4426 0.0128

Band 7 −0.3454 0.2200 −0.4414 0.2490 0.7584 0.0128

Eigenvalues 167,154,331.62 6,971,372.53 2,553,863.80 97,033.74 40,158.80 8988.42

Accounted
variance

94.53 3.94 1.44 0.055 0.02 0.0051

Cumulative
variance

94.53 98.47 99.92 99.97 99.99 100
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PC4 image is negated to highlight hydroxyl-bearing minerals
in bright pixels, and it was used as a hydroxyl image (H) (Fig.
7a) in the final RGB combination. This image has a negative
contribution from vegetation in the NIR band (band 5), which
has a similar response to hydroxyls in the SWIR bands.

Table 4 presents the loading results from PCA of bands 2,
4, 5, and 6 for iron oxide mineral enhancement. PC1 corre-
sponds to the albedo image with 94.5% of variance data; PC2,
with 4.1% of variance, represents the vegetated areas as darker

pixels; PC3 represents the contrast of SWIR band between
visible and NIR bands; and PC4 indicates high positive and
high negative eigenvector loading for band 2 (0.8136) and
band 4 (−0.5099), respectively, so in this image, pixels with
an abundance of iron oxide minerals are bright (Fig. 7b). This
PC4 image is our iron oxide image (F).

The greyscale hydroxyl and iron oxide images from selec-
tive PCA shown in Fig. 7 are useful to locate anomalous
concentrations of each mineral subset, highlighted by bright

Fig. 6 RGB combination image
using principal components as
input bands (PC4, PC5, PC6).
Different features are better
discriminated with urban areas
represented in pink, iron oxide-
rich zones in yellow and pink, and
clay-rich areas in light blue

Table 3 Eigenvector loading for
principal component analysis of
Landsat 8 bands 2, 5, 6, and 7 to
map hydroxyl-bearing minerals

PC1 PC2 PC3 PC4

Band 2 −0.3666 −0.5343 0.7424 −0.1701
Band 5 −0.6766 0.7000 0.1964 0.1166

Band 6 −0.5113 −0.2357 −0.5612 −0.6067
Band 7 −0.3826 −0.4110 −0.3089 0.7677

Eigenvalues 134,583,947.66 5,151,351.73 2,195,471.34 57,628.11

Accounted variance 94.79 3.63 1.55 0.041

Cumulative variance 94.79 98.41 99.96 100
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pixels. The combination of these images produced an image
highlighting anomalous concentrations of both iron oxides
and hydroxyl minerals (H+F).

A Crósta composite image was created combining the H,
H+F, and F images, with the bright pixels favorably enhanced
(Fig. 8). In this image, argilized and iron-stained alteration
zones are white to pale light blue, considered more favorable
for mineral occurrence (most prospective areas). Areas that are
more iron stained than argilized are shown in blue and light
blue. In contrast, zones that are more argilized than iron
stained are imaged in bright reddish to orange. Intense dark
or deep blue pixels in association with the alteration colors can
represent an alteration type associated with intensely argilized
or silicified and heavily iron-stained rocks, which pixels in
these areas have higher reflectance in band 7 than band 6
(Loughlin 1991). This alteration can be recognized in hydrox-
yl images by very dark pixels closely associated with bright

pixels, representing hydroxyl-altered areas. However, not all
intense dark blue to black areas correspond to hydrothermally
altered rocks. Burned vegetation can have a similar spectral
response, and SWIR bands are also sensitive to variations in
vegetation. Therefore, it is important to recognize alterations
around these dark areas.

Structural feature extraction

Structural lineament extraction was carried out via visual in-
terpretation of false color composites described above and
using Shuttle Radar Topography Mission (SRTM) digital el-
evation models (DEMs). Lineaments are identified by phys-
iographic characteristics detected due to the abrupt disconti-
nuity in image brightness and tonal change in the satellite data,
excluding man-made lineaments, vegetation alignments, and
other surface features (Fig. 9). Interpreted structural linea-
ments mainly strike NNE-SSW, ENE-WSW, and NNW-
SSE in this region.

Validation with historical data and field observations

The available historical exploration data was accessed to vali-
date the results of remote sensing image processing. Data from
geochemical soil sampling carried out by COGEMA in 1990
were used (COGEMA 1990). The soil sampling campaign fo-
cused on Limarinho deposit, partially covering the eastern flank
of Leiranco mountain. We used this data because Limarinho is
a well-studied deposit with known gold occurrence. As gold
mineralization is highly correlated with arsenopyrite, we used

Fig. 7 Principal component images resulting from selective PCA. a Hydroxyl (H). b Iron oxide (F). Each mineral subset is highlighted by bright pixels

Table 4 Eigenvector loading for principal component analysis of
Landsat 8 bands 2, 4, 5, and 6 to map iron oxide minerals

PC1 PC2 PC3 PC4

Band 2 −0.3753 0.5876 0.5039 −0.5099
Band 4 −0.3423 0.4694 0.0209 0.8136

Band 5 −0.6884 −0.6473 0.3186 0.0757

Band 6 −0.5178 0.1242 −0.8026 −0.2689
Eigenvalues 130,153,939.4 5,633,888 1,851,818 90,046.69

Accounted variance 94.50 4.10 1.34 0.065

Cumulative variance 94.50 98.60 99.93 100
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the arsenic soil anomaly distribution plot to analyze and iden-
tify potential anomalous areas (Fig. 10) (Noronha et al. 2000;
Cepedal et al. 2013; Lima et al. 2014a; Fuertes-Fuente et al.
2016).

Remote sensing analysis did not identify the Limarinho
area because of the dense vegetation, and mainly the soil re-
mobilization caused by extensive Roman mining, as demon-
strated by abundant tailings, and more recent agricultural ac-
tivities (Lima et al. 2011; Lima et al. 2014a). By the analysis
of Fig. 10, a correlation with the results of remote sensing and
historical geochemical soil samples is observed. The arsenic
anomaly on the flank of Leiranco mountain matches with the
hydrothermally altered area highlighted by remote sensing,
and we assume that this soil anomaly continues through the
top of the mountain. In addition, interpreted structures reveal
spatial correlation with these arsenic soil anomalies.

Leiranco mountain was identified as a potential area for
mineral occurrence due to the strong hydrothermal alteration
highlighted in the satellite imagery analysis (Fig. 10).
Similarly, to Limarinho, in this area, there is a high density
of quartz veins rich in arsenopyrite, along with associated

alteration zones such as argillic, argillic silica, and iron oxide
alteration. Outcrop views of these veins and associated alter-
ation are shown in Fig. 11. The remote sensing analysis and
field observations (Figs. 10 and 11) indicated that hydrother-
mal alterations around Leiranco mountain are widely extend-
ed. Granite outcrops are hydrothermally altered, with iron ox-
ides and hydroxyl-bearing minerals. The alteration is often
associated with thin parallel quartz arsenopyrite-bearing
veins, and gold mineralization is typically related to these
alteration zones associated with arsenopyrite (Noronha et al.
2000; Cepedal et al. 2013; Lima et al. 2014a; Fuertes-Fuente
et al. 2016).

Discussion

In geological exploration, target generation is an important stage
involving high risk and defining prospective areas requires geo-
logical information, which is sometimes unavailable or inaccu-
rate. Furthermore, field reconnaissance is time-consuming and
can be difficult and expensive. Remote sensing has been

Fig. 8 RGB combination using
H, H+F, and F images, the Crósta
composite image. Alteration
zones both argilized and iron
stained are represented in white
pale to light blue, areas rich in
iron oxides in blue to light blue,
and areas more argilized in bright
reddish to orange. Some dark blue
pixels can represent areas
intensely argilized or silicified,
and heavily iron-stained rocks
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successfully applied to map hydrothermal alteration zones asso-
ciated with mineralization in different parts of the world (Sabins
1999; Robert et al. 2007; Cudahy 2016; Pour et al. 2018b;
Bolouki et al. 2020; Booysen et al. 2019; Eldosouky et al.
2020; Pour et al. 2019; Beygi et al. 2020; Sekandari et al.
2020; Takodjou Wambo et al. 2020; Traore et al. 2020).
Remote sensing data along with other gathered geological data,
such as geochemical and geophysical information, can be inte-
grated to produce a potential mineral occurrence map (Rajesh
2004; Porwal and Kreuzer 2010; Pour and Hashim 2015;
Manuel et al. 2017; Xiang et al. 2020). In this investigation,
different satellite imagery processing methods were applied to
Landsat 8 data to map hydroxyl-bearing and iron oxide min-
erals, and to extract structural lineaments, defining prospective
targets in Boticas-Chaves region. Hydrothermal alteration min-
erals were mapped based on the spectral absorption characteris-
tics for iron oxides and hydroxyl-bearing minerals by
implementing RGB combinations, band ratios, and PCA

algorithms to the spectral bands of Landsat 8. RGB combina-
tions, such as 573 and 567, were capable of distinguishing dif-
ferent features and enhancing alteration on rock outcrops.
However, this imagery analysis method has strong influence
of noise and it is difficult to separate signals from different
mineral compositions, which makes this type of analysis the
most challenging to interpret. For this method, best results can
be obtained in remote areas without signal noise from urban
areas and in less vegetated regions.

Band ratios were applied to eliminate topographic effects
and reduce noise, enhancing the spectral characteristics. The
band ratio combination of 4/2 was applied to highlight iron
oxides and the band ratio 6/5 was generated in order to map
ferrous minerals. Both band ratios contributed to the litholog-
ical interpretation on a regional scale. Granites showed a good
correlation with the highlighted areas, mostly because of the
alteration of biotite. To map hydroxyl-bearing minerals, the
band ratio 6/7 was used.

Fig. 9 Interpreted structural
lineaments over the Crósta
composite image. Most
prospective areas are outlined in
dashed red lines

Page 13 of 18     459Arab J Geosci (2021) 14: 459



Fig. 10 Arsenic anomaly from
historical soil sampling campaign
plotted with interpreted structural
lineaments and most prospective
areas outlined in dashed red lines

Fig. 11 Field photographs of
high-density parallel quartz veins
and typical associated hydrother-
mal alteration on Leiranco moun-
tain. a View of parallel N40°;
subvertical quartz arsenopyrite-
bearing veins hosted by two-mica
granite. b Oxidized and argilized
granite in the selvages of quartz
arsenopyrite-bearing veins
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The results show clay minerals concentrated along water
lines that can be associated with structural elements as faults.
However, SWIR bands are sensitive to moisture in vegetation
and soil and can also highlight certain types of vegetation
(Murakami 2006; USGS 2012; Ferreira et al. 2015; Cudahy
2016; Ridwan et al. 2018). Ploughed fields are also enhanced
by this band ratio, possibly due to soil remobilization expos-
ing higher concentrations of these minerals at the surface. The
band ratio method not only proved to be a better technique in
comparison with single band RGB combinations, highlighting
more features, but also demonstrated some limitations in map-
ping hydrothermally altered rocks.

PCA methods proved to be the most effective and reliable
in the identification of iron oxides and hydroxyl-bearing min-
erals. Standard and selective PCA outputs demonstrated the
capability to efficiently discriminate different features and
highlight potentially hydrothermally altered areas. Selective
PCA is even more effective, as it can separate hydroxyl-
bearing minerals and iron oxides, in defining unique PCs for
specific mineral subsets. The combination of selective PCA
outputs in an RGB image produces a better quality image,
enhancing the identification of alteration types and intensities.

Lineaments were extracted by relying on visual interpreta-
tion of remote sensing imagery and the SRTM elevation mod-
el. Geological lineaments such as faults and joints are of in-
terest because they can serve as conduits for mineralizing
fluids. Textural characteristics of structural features are recog-
nizable bymultispectral imagery analysis, allowing to identify
lineaments. It is important to mention that some of the mapped
features may not be of geologic nature, but good correlation is
verified between the published geological maps (Fig. 1) and
the visually interpreted lineaments (Fig. 9).

Subsequently, potential prospective areas for the study zone
were defined (Fig. 9). Hydrothermally altered rocks located
adjacent to the NNE-SSW, NNW-SSE, and ENE-WSW struc-
tures, which likely worked as mineralizing fluid conduits, were
identified as high potential for gold mineralization occurrence.
Known mineral occurrences reveal a spatial relationship with
the structural features in the study area, and the historical geo-
chemistry data and field observations in the Leiranco mountain
present a strong correlation with the remote sensing analysis.
However, some known occurrences in the study area, such as
the Limarinho deposit, do not reveal a strong signature of hy-
drothermal alteration minerals, which can be explained by spa-
tial resolution and vegetation cover, and mainly soil remobili-
zation caused by extensive Roman mining (Lima et al. 2011;
Lima et al. 2014a). More advanced analysis should be carried
out to define more precisely the areas of interest, mask all noise
sources, such as urban areas and vegetation, and compare the
results with other satellite imagery. Computational algorithms
can also be employed to optimize lineament extraction.
Nevertheless, applied analyses to Landsat 8 satellite imagery
were capable to map iron oxides and hydroxyl-bearing

minerals, and allowed the identification of important structure
lineaments, indicating highly prospective targets.

Conclusion

This investigation aimed to demonstrate the applicability of
Landsat 8 imagery analysis to an area situated in a mild and
humid climatic zone and to prove that it is a suitable comple-
ment to early-stage fieldwork. Remote sensing methodologies,
such as RGB combination, band ratio, and PCA methods were
applied to obtain relevant geological features to outline areas
with potential for gold mineralization occurrence in Boticas-
Chaves region, Portugal. The application of selective PCA
proved to be the most efficient to map pixels containing the
spectral signature for specific alteration minerals. The occur-
rence of both hydrothermal alteration minerals, hydroxyl and
iron oxide, spatially close to NNE-SSW, ENE-WSW and
NNW-SSE structural features trends, are considered highly pro-
spective zones for gold mineralization in the study area (Fig. 9)
and can be used as a target for exploration works. The results of
this study demonstrate that the applied remote sensing methods
provide valuable geological information that can be used as an
efficient evidential layer for mineral prospectivity mapping and
it is a cost-efficient and time-saving tool for mineral exploration,
which applied in other regions can efficiently identify new po-
tentially mineralized areas.
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